We werken aan het herstellen van de Unionpedia-app in de Google Play Store
🌟We hebben ons ontwerp vereenvoudigd voor betere navigatie!
Instagram Facebook X LinkedIn

Ideaal (ringtheorie) en Moduul

Snelkoppelingen: Verschillen, Overeenkomsten, Jaccard Similarity Coëfficiënt, Referenties.

Verschil tussen Ideaal (ringtheorie) en Moduul

Ideaal (ringtheorie) vs. Moduul

Een ideaal is in de abstracte algebra, specifiek in de ringtheorie, een deelgebied van de wiskunde, een deelverzameling van een ring, die gesloten is ten aanzien van lineaire combinaties met coëfficiënten uit de ring. In de abstracte algebra, een deelgebied van de wiskunde, is een moduul over een ring een generalisatie van een vectorruimte.

Overeenkomsten tussen Ideaal (ringtheorie) en Moduul

Ideaal (ringtheorie) en Moduul hebben 11 dingen gemeen (in Unionpedia): Abelse groep, Abstracte algebra, Commutatieve algebra, Commutatieve ring, Element (wiskunde), Ideaal (ringtheorie), Lichaam (Ned) / Veld (Be), Ring (wiskunde), Ring van de gehele getallen, Verzameling (wiskunde), Wiskunde.

Abelse groep

Een abelse groep, ook wel commutatieve groep genoemd, is een groep die er aan voldoet dat het product van twee elementen niet van de volgorde afhangt waarin de groepsbewerking wordt uitgevoerd, dus altijd commutatief is.

Abelse groep en Ideaal (ringtheorie) · Abelse groep en Moduul · Bekijk meer »

Abstracte algebra

De abstracte algebra is het deelgebied van de wiskunde, waar men algebraïsche structuren, zoals groepen, ringen en lichamen of velden, modulen, vectorruimten en algebra's bestudeert.

Abstracte algebra en Ideaal (ringtheorie) · Abstracte algebra en Moduul · Bekijk meer »

Commutatieve algebra

In de abstracte algebra, een onderdeel van de wiskunde, bestudeert de commutatieve algebra commutatieve ringen, hun idealen en modulen over zo'n ring.

Commutatieve algebra en Ideaal (ringtheorie) · Commutatieve algebra en Moduul · Bekijk meer »

Commutatieve ring

In de ringtheorie, een onderdeel van de abstracte algebra, is een commutatieve ring een ring, waarin de bewerking die overeenkomt met de vermenigvuldiging, commutatief is.

Commutatieve ring en Ideaal (ringtheorie) · Commutatieve ring en Moduul · Bekijk meer »

Element (wiskunde)

In de verzamelingenleer is een element een onderdeel van een verzameling of, meer algemeen, van een klasse.

Element (wiskunde) en Ideaal (ringtheorie) · Element (wiskunde) en Moduul · Bekijk meer »

Ideaal (ringtheorie)

Een ideaal is in de abstracte algebra, specifiek in de ringtheorie, een deelgebied van de wiskunde, een deelverzameling van een ring, die gesloten is ten aanzien van lineaire combinaties met coëfficiënten uit de ring.

Ideaal (ringtheorie) en Ideaal (ringtheorie) · Ideaal (ringtheorie) en Moduul · Bekijk meer »

Lichaam (Ned) / Veld (Be)

Een lichaam (Nederlands) of veld (Belgisch), niet te verwarren met het ruimere begrip delingsring (Ned) / lichaam (Be), is een algebraïsche structuur waarin de bewerkingen optellen, aftrekken, vermenigvuldigen en delen op de gebruikelijke wijze kunnen worden uitgevoerd.

Ideaal (ringtheorie) en Lichaam (Ned) / Veld (Be) · Lichaam (Ned) / Veld (Be) en Moduul · Bekijk meer »

Ring (wiskunde)

In de ringtheorie, een deelgebied van de abstracte algebra, is een ring een algebraïsche structuur, die uit een verzameling V bestaat, waarop twee bewerkingen zijn gedefinieerd die intuïtief overeenkomen met optellen en vermenigvuldigen.

Ideaal (ringtheorie) en Ring (wiskunde) · Moduul en Ring (wiskunde) · Bekijk meer »

Ring van de gehele getallen

In de algebraïsche getaltheorie is de ring van de gehele getallen de verzameling van gehele getallen, die tot een algebraïsche structuur \Z, uitgerust met de operaties van optelling, aftrekken en vermenigvuldiging, is gemaakt.

Ideaal (ringtheorie) en Ring van de gehele getallen · Moduul en Ring van de gehele getallen · Bekijk meer »

Verzameling (wiskunde)

Venndiagram van de doorsnede A\cap B van twee verzamelingen A en B In de wiskunde is een verzameling een abstract object dat het totaal voorstelt van verschillende objecten, die elementen van de verzameling genoemd worden.

Ideaal (ringtheorie) en Verzameling (wiskunde) · Moduul en Verzameling (wiskunde) · Bekijk meer »

Wiskunde

Wiskunde (minder gebruikelijk: mathematiek, mathematica of mathesis) is een formele wetenschap die onder andere getallen, patronen en abstracte structuren bestudeert.

Ideaal (ringtheorie) en Wiskunde · Moduul en Wiskunde · Bekijk meer »

De bovenstaande lijst antwoord op de volgende vragen

Vergelijking tussen Ideaal (ringtheorie) en Moduul

Ideaal (ringtheorie) heeft 58 relaties, terwijl de Moduul heeft 35. Zoals ze gemeen hebben 11, de Jaccard-index is 11.83% = 11 / (58 + 35).

Referenties

Dit artikel toont de relatie tussen Ideaal (ringtheorie) en Moduul. Om toegang te krijgen tot elk artikel waarvan de informatie werd gehaald, kunt u terecht op: