We werken aan het herstellen van de Unionpedia-app in de Google Play Store
UitgaandeInkomende
🌟We hebben ons ontwerp vereenvoudigd voor betere navigatie!
Instagram Facebook X LinkedIn

Algebraïsche variëteit

Index Algebraïsche variëteit

In de algebraïsche meetkunde, een deelgebied van de wiskunde, is een algebraïsche variëteit de oplossingsverzameling van een systeem van polynomiale vergelijkingen.

Inhoudsopgave

  1. 34 relaties: Affiene ruimte, Algebra, Algebraïsche kromme, Algebraïsche meetkunde, Algebraïsche verzameling, Cirkel, Complex getal, Deelverzameling, Eenterm, Gesloten (algebra), Hilberts Nullstellensatz, Homogene coördinaten, Hoofdstelling van de algebra, Ideaal (ringtheorie), Integriteitsgebied, Jean-Pierre Serre, Lege verzameling, Lichaam (Ned) / Veld (Be), Lijn (meetkunde), Meetkunde, Nulpunt (wiskunde), Object (wiskunde), Oplossingsverzameling, Polynoom, Projectieve ruimte, Ringtheorie, Schema (wiskunde), Variëteit (wiskunde), Veeltermring, Vereniging (verzamelingenleer), Vergelijking (wiskunde), Verzameling (wiskunde), Wiskunde, Zariski-topologie.

  2. Algebraïsche meetkunde

Affiene ruimte

Lijnstukken in een tweedimensionale affiene ruimte. In de meetkunde, een deelgebied van de wiskunde, is een affiene ruimte een meetkundige structuur, die de affiene eigenschappen van de euclidische ruimte veralgemeent.

Bekijken Algebraïsche variëteit en Affiene ruimte

Algebra

Algebra is de tak van de wiskunde die de betrekkingen van door letters en tekens aangeduide grootheden onderzoekt.

Bekijken Algebraïsche variëteit en Algebra

Algebraïsche kromme

In de algebraïsche meetkunde is een algebraïsche kromme een eendimensionale algebraïsche variëteit, die dus door een polynomiale vergelijking weergegeven kan worden.

Bekijken Algebraïsche variëteit en Algebraïsche kromme

Algebraïsche meetkunde

Dit Togliatti-oppervlak is een algebraïsch oppervlak van graad vijf. Algebraïsche meetkunde is een deelgebied van de wiskunde dat technieken uit de abstracte algebra, vooral de commutatieve algebra, combineert met de taal en de problemen van de meetkunde.

Bekijken Algebraïsche variëteit en Algebraïsche meetkunde

Algebraïsche verzameling

In de wiskunde is een algebraïsche verzameling over een lichaam (Nederlands) of veld (België) K een verzameling in K^n (n-tupels van elementen van K) van oplossingen van een stelsel van m polynomiale vergelijkingen in n variabelen.

Bekijken Algebraïsche variëteit en Algebraïsche verzameling

Cirkel

Cirkel met middelpunt M, diameter d en straal r Een cirkel met middelpunt (x_0,y_0) en straal r Middelloodlijnen van een driehoek van koorden snijden elkaar in het middelpunt van een cirkel Cirkelboog, cirkelsector en cirkelsegment. In de meetkunde is een cirkel een tweedimensionale figuur die wordt gevormd door alle punten die dezelfde afstand tot een bepaald punt hebben.

Bekijken Algebraïsche variëteit en Cirkel

Complex getal

In de wiskunde zijn complexe getallen een uitbreiding van de reële getallen.

Bekijken Algebraïsche variëteit en Complex getal

Deelverzameling

Een venndiagram van de verzameling A als deelverzameling van B.B omvat A. In de verzamelingenleer is een deelverzameling van een gegeven verzameling een verzameling die geheel bevat is in (deel is van) de gegeven verzameling.

Bekijken Algebraïsche variëteit en Deelverzameling

Eenterm

In de algebra is een eenterm, monoom of monomium een polynoom die slechts uit één term bestaat.

Bekijken Algebraïsche variëteit en Eenterm

Gesloten (algebra)

Een bewerking op twee elementen van hetzelfde lichaam, dezelfde groep of dezelfde ring, zoals de vermenigvuldiging van twee getallen, heet gesloten, als de uitkomst van die bewerking zelf ook weer een element is van dat lichaam, die groep of die ring.

Bekijken Algebraïsche variëteit en Gesloten (algebra)

Hilberts Nullstellensatz

Hilberts Nullstellensatz, in het Nederlands: nulpuntenstelling van Hilbert, is een stelling uit de algebraïsche meetkunde, een tak van de wiskunde, die algebraïsche verzamelingen en idealen in veeltermringen relateert over algebraïsch gesloten velden.

Bekijken Algebraïsche variëteit en Hilberts Nullstellensatz

Homogene coördinaten

In de meetkunde, een deelgebied van de wiskunde, worden coördinaten homogeen genoemd, als ze op een factor na bepaald zijn, zodat alleen hun onderlinge verhoudingen absolute betekenis hebben.

Bekijken Algebraïsche variëteit en Homogene coördinaten

Hoofdstelling van de algebra

De hoofdstelling van de algebra, een belangrijke stelling binnen de wiskunde, houdt in dat elke niet constante polynoom in één variabele met coëfficiënten die geheel, rationaal, reëel of complex zijn, ten minste één complex nulpunt heeft.

Bekijken Algebraïsche variëteit en Hoofdstelling van de algebra

Ideaal (ringtheorie)

Een ideaal is in de abstracte algebra, specifiek in de ringtheorie, een deelgebied van de wiskunde, een deelverzameling van een ring, die gesloten is ten aanzien van lineaire combinaties met coëfficiënten uit de ring.

Bekijken Algebraïsche variëteit en Ideaal (ringtheorie)

Integriteitsgebied

In de commutatieve algebra, een deelgebied van de wiskunde, is een integriteitsgebied, ook integriteitsdomein, integraaldomein of kortweg domein, een commutatieve ring zonder nuldelers, ongelijk aan de triviale ring.

Bekijken Algebraïsche variëteit en Integriteitsgebied

Jean-Pierre Serre

Jean-Pierre Serre in 2007 Jean-Pierre Serre (Bages, 15 september 1926) is een Frans wiskundige.

Bekijken Algebraïsche variëteit en Jean-Pierre Serre

Lege verzameling

Symbool voor de lege verzameling In de wiskunde is de lege verzameling de verzameling zonder elementen.

Bekijken Algebraïsche variëteit en Lege verzameling

Lichaam (Ned) / Veld (Be)

Een lichaam (Nederlands) of veld (Belgisch), niet te verwarren met het ruimere begrip delingsring (Ned) / lichaam (Be), is een algebraïsche structuur waarin de bewerkingen optellen, aftrekken, vermenigvuldigen en delen op de gebruikelijke wijze kunnen worden uitgevoerd.

Bekijken Algebraïsche variëteit en Lichaam (Ned) / Veld (Be)

Lijn (meetkunde)

Een lijn of rechte is een eendimensionale structuur zonder kromming, bestaande uit een continue aaneenschakeling van punten.

Bekijken Algebraïsche variëteit en Lijn (meetkunde)

Meetkunde

Een vrouw onderwijst studenten in de meetkunde. In de middeleeuwen was het ongewoon dat een vrouw afgebeeld werd als lerares, vooral omdat de afgebeelde studenten waarschijnlijk monniken zijn. Het is mogelijk dat de vrouw een personificatie van de meetkunde is. De meetkunde, ook wel geometrie (van Oudgrieks: γεωμετρία, γῆ "aarde", μέτρον "maat"), het "meten van de aarde", is het onderdeel van de wiskunde, dat zich bezighoudt met het bepalen van afmetingen, vormen, de relatieve positie van figuren en de eigenschappen van die figuren en van de ruimte waarin ze geplaatst zijn.

Bekijken Algebraïsche variëteit en Meetkunde

Nulpunt (wiskunde)

Een polynoom met een nulpunt voor x.

Bekijken Algebraïsche variëteit en Nulpunt (wiskunde)

Object (wiskunde)

Een wiskundig object is in de filosofie van de wiskunde en in de wiskunde zelf, ieder onderwerp van wiskundig onderzoek dat in termen van de verzamelingenleer is uit te drukken.

Bekijken Algebraïsche variëteit en Object (wiskunde)

Oplossingsverzameling

punt (2, 3). In de wiskunde is een oplossingsverzameling een verzameling van mogelijke waarden die een variabele kan aannemen om te voldoen aan een of meer voorwaarden, waaronder ook vergelijkingen en ongelijkheden kunnen vallen.

Bekijken Algebraïsche variëteit en Oplossingsverzameling

Polynoom

Grafiek van de polynoom y.

Bekijken Algebraïsche variëteit en Polynoom

Projectieve ruimte

In wiskunde is een projectieve ruimte een verzameling van elementen die opgevat kan worden als de verzameling P(V) van lijnen door de oorsprong van een vectorruimte V. Als V.

Bekijken Algebraïsche variëteit en Projectieve ruimte

Ringtheorie

In de wiskunde is de ringtheorie de studie van ringen, algebraïsche structuren, waar de operaties optellen en vermenigvuldigen zijn gedefinieerd en vergelijkbare eigenschappen hebben als bij de gehele getallen.

Bekijken Algebraïsche variëteit en Ringtheorie

Schema (wiskunde)

In de wiskunde is een schema een belangrijk concept dat de wiskundige deelgebieden van de algebraïsche meetkunde, de commutatieve algebra en de getaltheorie met elkaar verbindt.

Bekijken Algebraïsche variëteit en Schema (wiskunde)

Variëteit (wiskunde)

Een boloppervlak is een tweedimensionale variëteit. In de differentiaalmeetkunde en differentiaaltopologie, deelgebieden van de wiskunde, is een variëteit een topologische ruimte die lokaal, dat wil zeggen in een voldoend klein deel, op de euclidische ruimte, de ruimte die niet is gekromd, van een specifieke dimensie lijkt.

Bekijken Algebraïsche variëteit en Variëteit (wiskunde)

Veeltermring

In de ringtheorie, een deelgebied van de wiskunde, is een veeltermring een verzameling van veeltermen in een of meer veranderlijken met coëfficiënten in een ring.

Bekijken Algebraïsche variëteit en Veeltermring

Vereniging (verzamelingenleer)

right In de verzamelingenleer is de vereniging of unie van een collectie verzamelingen de verzameling die bestaat uit alle elementen van de samenstellende verzamelingen.

Bekijken Algebraïsche variëteit en Vereniging (verzamelingenleer)

Vergelijking (wiskunde)

Oudst bekende vergelijking, door Robert Recorde, in moderne typografie staat er 14x + 15.

Bekijken Algebraïsche variëteit en Vergelijking (wiskunde)

Verzameling (wiskunde)

Venndiagram van de doorsnede A\cap B van twee verzamelingen A en B In de wiskunde is een verzameling een abstract object dat het totaal voorstelt van verschillende objecten, die elementen van de verzameling genoemd worden.

Bekijken Algebraïsche variëteit en Verzameling (wiskunde)

Wiskunde

Wiskunde (minder gebruikelijk: mathematiek, mathematica of mathesis) is een formele wetenschap die onder andere getallen, patronen en abstracte structuren bestudeert.

Bekijken Algebraïsche variëteit en Wiskunde

Zariski-topologie

Zariskitopologie is een begrip in de wiskunde, op het kruispunt van de topologie en de algebraïsche meetkunde.

Bekijken Algebraïsche variëteit en Zariski-topologie

Zie ook

Algebraïsche meetkunde

Ook bekend als Affiene variëteit, Projectieve variëteit.